

Give a specific example to show that the following statement is FALSE. _4)

$$\log\left(\frac{M}{N}\right) = \frac{\log M}{\log N}$$

- Not to be outdone, Tarik decided to examine the table. 5) Instead of adding two different entries, he decided to add the same entry to itself — in other words, to take multiples of one particular entry. He began with multiples of log 2. If the answer wasn't in the table, he used his calculator.
 - a) $2 \log 2 = ?$
 - $3 \log 2 = ?$ b)
 - c) $4 \log 2 = ?$
 - Complete and check: $-2 \log 5 = ?$ d)
 - Complete and check: $0.5 \log 64 = ?$ e)
 - Copy and complete: $n \log x =$ f)

log 1 = 0 $\log 2 = 0.3010299957$ $\log 3 = 0.4771212547$ $\log 4 = 0.6020599913$ $\log 5 = 0.6989700043$ $\log 6 = 0.7781512504$ $\log 7 = 0.84509804$ $\log 8 = 0.903089987$ $\log 9 = 0.9542425094$ $\log 10 = 1$

 $\log 11 = 1.0413926852$

 $\log 12 = 1.0791812460$

6) Add these Laws of Logarithms to your notes:

Laws of Logarithms **Product Rule** 1. $\log(xy) = \log x + \log y$ 2. $\log \left(\frac{x}{y}\right) = \log x - \log y$ **Quotient Rule Power Rule** 3. $\log (x^n) = n \cdot \log x$

- Use a log law to write each of these in a different equivalent form, or say "impossible" and explain why.
 - $\log_5 8 + \log_5 4$ a)
- $\log (5 \cdot 7)$ b)
- (log₅ 8)(log₅ 7)

- d)
- $\log (5+7)$ e) $\log_5 8 + \log_8 5$ f) $\log_3 5 + \log_3 5$

1) Use Properties of Logs to find the value of each of the following:

Let $\log_b M = 3.2$, $\log_b N = -1.5$, and $\log_b P = 2.4$. Find:

- a) $\log_b \frac{M^2N}{P}$
- b) $\log_b \frac{1}{M}$

c) $\log_b \sqrt[3]{\frac{P}{N}}$

d) $\log_b M^2 \sqrt{P}$

- 2) Rewrite using the Change of Base Formula. Then find each value to the nearest .001.
- a) $\log_{15} 1460$

b) $\log_{1/2} 4$

- 3) Rewrite each logarithm as a sum or quotient to approximate the following using the properties of logs, given the following values. Round your answer to 3 decimal places.
- a)

b)

c)

$$\log_b \sqrt{3}$$

$$\log_b 30$$

 $\log_{b} \frac{16}{25}$

$$log_b 2 = .356$$

$$log_b 3 = .565$$
$$log_b 5 = .827$$

$$log_b 5 = .827$$

- 4) Find the value of each logarithm without using a calculator.
 - a) $\log_3 9$

- b) $\log_6 \sqrt[3]{6}$
- c) $\log_4 16^{3.4}$

d) $\log_5 0.04$

- e) $\log_{100} 0.01$
- f) $\log_9 \frac{1}{3}$

- 5) Solve each equation.
 - a) $\log_4(x+3) = -1$

b) $\log(x^2 - 4) = 0$

c) $\log 3x^2 = \log (2x + 15)$

- d) $log_3 8x 3 = log_3 2x + 9$
- 6) Simplify each of the following using Properties of Logs.
- a) $\ln y + \ln z$

b) $\log_5 8 - \log_5 t$

c) $2 \log_2(x+3)$

d) $\ln x - 3 \ln(x+1)$

- e) $3 \ln x + 2 \ln y 4 \ln z$
- f) $\ln x 2[\ln(x+2) + \ln(x-2)]$

- 7) Find the exact value of the following without using a calculator.
- a) $\log_5 75 \log_5 3$
- b) $\log_4 2 + \log_4 32$
- c) $\ln e^6 2 \ln e^5$