Trigonometry/Precalculus Chapter 3 Review
Day \qquad CW/HW

Name
Date
Block

Fill in the following statements.

1) The inverse of an exponential function is a \qquad function.
2) The inverse of $f(x)=7^{x}$ is $g(x)=$ \qquad .
3) The inverse of $f(x)=\log _{6} x$ is $g(x)=$ \qquad .

4*) Use the idea of inverses to draw an accurate sketch of both $f(x)=3^{x}$ and $g(x)=\log _{3} x$. Then state the domain, range and asymptote of each.
$f(x)$
$\mathbf{g}(x)$
D:
D:
R:
R :
Asymptote: Asymptote:

$5 A^{*}$) Draw and accurate sketch of $f(x)=2^{x}$.
B^{*}) Describe how $g(x)=-2^{(x+3)}-1$ compares to $f(x)$.

c^{*}) Use part b to draw $g(x)$.
$\left.D^{*}\right)$ Sketch and label $h(x)=2^{-x}+1$

6*) Arrange the following in order from smallest to largest. (try without a calculator)
$\log _{2} 5$
$\log _{2} 1 \quad \log _{2} 3$
a) \qquad
e) \qquad $\log _{3} 9 \quad \log _{3} 8 \quad \log _{2} \frac{1}{2}$
b) \qquad
f) \qquad $\log _{3} \sqrt[3]{3} \quad \log _{2} 8$
c) \qquad
g)

d) \qquad
h) \qquad

7*) Find the exact value of each logarithmic expression without using a calculator.
a) $\log _{4} 64$
b) $\log _{2} \sqrt[4]{8}$
c) $\log _{4} 16^{1.2}$
d) $\ln \frac{1}{\sqrt{e}}$
e) $\log _{9} \frac{1}{3}$
f) $\log \frac{1}{1000}$
g) $\log _{8} 1$
h) $\ln e^{3}-\ln e^{7}$
8) Write an equation in the form $y=a b^{x}$ that passes through the following points $(1,12)$ and $(-1,3)$.
9) Use the properties of logs to expand the following expressions:
a) $\log x y z^{2}$
b) $\log \frac{6}{\sqrt{x+1}}$
10) If $\log _{b} M=2.1$ and $\log _{b} N=-3$, use properties of logs to find $\log _{b} \frac{\sqrt{M}}{N^{3}}$.
11) Solve the following. Find exact values when possible.
a) $\log _{5} x=3$
b*) $9^{x+10}=27^{2 x+3}$
c) $7+\log (x-4)=9$
d)
$243=3\left(10^{x}\right)$
e)
$e^{x-3}+8=10$
f)

$$
\log _{5} x-\log _{5} 7=\log _{5} 12
$$

g) $1 / 2 \log \mathrm{x}+\log 5=\log 30$
h)
$\log _{2} x-\log _{2} 3=4$
i)
$\ln \frac{2}{x}=1$
j) $\log _{3}\left(5 x^{2}\right)=\log _{3}(3 x+2) \quad$ k) $\quad \log _{x} 2,401=4$

1*) $\left(\frac{1}{32}\right)^{x}=16^{(x+1)}$

12*) Write the equation of each transformed parent function.
a)

b)

c)

13) In a research experiment, a population of fruit flies is increasing according to the law of exponential growth. After 2 days there are 100 flies, and after 4 days there are 300 flies.

a) Using the equation $A=P e^{k t}$ where t is	b) Write an equation to represent the fruit
time in days, find the growth constant k	
for the fruit fly population.	fly population at any time t after the experiment has started.
c) Find the population after 5 days.	d) After how many days will the fly population reach 1000?

14) Chromium -48 has a short half-life of 21.6 hours. How long will it take 360 g of chromium -48 to decay to 11.25 g ?
15) A 208 g sample of sodium-24 decays to 13.0 g within 60.0 hours. What is the half-life of this radioactive isotope?
16) A year after the purchase of a new car, its value is appraised at $\$ 18,000$. Four years after its purchase, the car's value is $\$ 11,054$.
a) Write an equation in the form $y=a b^{x}$ that represents the value of the car after its b) What does the value of " a " in your equation represent? purchase.
c) If the car's owner wants to sell the car when its value is still $\$ 5,000$ or higher, when should he sell the car?

18*) Write an equation for each of the following piecewise functions.
a)
$f(x)=$

19*) Make a careful sketch of the piecewise function below:

$$
f(x)=\left\{\begin{array}{cc}
-\frac{1}{2} x+3 & x \leq-2 \\
-(x+1)^{3}+3 & -2<x<0 \\
|x-2| & x \geq 0
\end{array}\right.
$$

17) Determine each of the following for the given polynomial function given at points of inflection at $(-2,2),(0,0)$ and $(2,-3)$.

Relative Minimum(s): \qquad

Relative Maximum(s): \qquad

Intervals of decrease: \qquad Interval(s) of increase: \qquad Concave Up Interval(s): \qquad
Concave Down Interval(s):
b)
$f(x)=$

