Trigonometry/Precalculus
Graphing Tangent \& Reciprocal Trig Functions
Day \qquad

Name
Date
Block

1) Fill in the table to graph $f(x)=\tan x$.

x	$-\frac{3 \pi}{2}$	$-\frac{5 \pi}{4}$	$-\pi$	$-\frac{3 \pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$\tan \mathrm{x}$									

x	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$
$\tan \mathrm{x}$				

Plot the points above. Sketch an asymptote for each value of x that is undefined. Let the asymptotes shape your curve as you connect it.
2) The graph of $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ is shown below. Fill in the table to graph $\csc \mathrm{x}=\frac{1}{f(x)}$.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\csc \mathrm{x}$									

Plot the points above. Sketch an asymptote for each value of x that is undefined. Let the asymptotes shape your curve as you connect it.
3) The graph of $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ is shown below. Fill in the table to graph $\sec \mathrm{x}=\frac{1}{f(x)}$.

4) Fill in the table to graph $f(x)=\cot x$.

x	$-\pi$	$-\frac{3 \pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$\cot \mathrm{x}$									

x	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$\cot \mathrm{x}$				

1) The \qquad of a sine or cosine curve represents the distance from the midline to either the peak or valley of a wave.
2) The amount of distance it takes to complete one cycle of a sinusoidal curve is called its \qquad .
3) The \qquad of a sinusoidal function tells how many cycles occur in the span of 2π.
4) The equation that relates the period and frequency of a sinusoidal curve is \qquad .
5) For both sine and cosine curves, the domain is \qquad and
the range is \qquad .
6) To calculuate the tangent of an angle on the Unit Circle, divide the
\qquad by the \qquad .

Trigonometry/Precalculus
Day 19 Warm Up

1) The \qquad of a sine or cosine curve represents the distance from the midline to either the peak or valley of a wave.
2) The amount of distance it takes to complete one cycle of a sinusoidal curve
is called its \qquad .
3) The \qquad of a sinusoidal function tells how many cycles occur in the span of 2π.
4) The equation that relates the period and frequency of a sinusoidal curve is \qquad .
5) For both sine and cosine curves, the domain is \qquad and
the range is \qquad .
6) To calculuate the tangent of an angle on the Unit Circle, divide the
\qquad by the \qquad .
